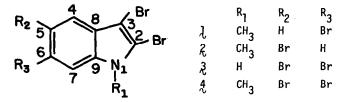
BROMINATED INDOLES FROM LAURENCIA BRONGNIARTII

Guy T. Carter and Kenneth L. Rinehart, Jr.* Roger Adams Laboratory, University of Illinois, Urbana, IL 61801, U.S.A.


Li H. Li and Sandra L. Kuentzel

The Upjohn Company, Kalamazoo, MI 49001, U.S.A.

Judith L. Connor

Smithsonian Institution & Horn Point Environmental Laboratory, Cambridge, MD 21613

During the Alpha Helix Caribbean Expedition in February-March 1978 (AHCE 1978), we examined numerous samples of <u>Laurencia</u> by GC/MS¹ on shipboard, as part of a comprehensive survey² of Caribbean <u>Laurencia</u> species. In the main, these examinations identified bromoterpenes of types previously found by GC/MS of west coast <u>Laurencia</u> species.^{3,4} However, <u>Laurencia brongniartii</u> J. Agardh (AHCE 22-III-78-2-101), which belongs to a different section (Planae) of the subgenus Laurencia,² produced, instead, a mixture of brominated indoles (1-4) in copious amounts.

Our attention was initially drawn to <u>Laurencia brongniartii</u> by its antimicrobial activity vs. <u>Bacillus subtilis</u> (a gram-positive bacterium) and <u>Saccharomyces cerevisiae</u> (a yeast), which correlates well with prediction from its high organic halogen content.⁵ Shipboard GC/MS analysis indicated nearly all the organic halogen to reside in isomeric compounds of molecular weights⁶ 365 (Br_3), 429 (Br_4) and 443 (Br_4),⁷ the odd molecular weights indicating immediately the compounds' nitrogen content.

To isolate the brominated compounds a sample of the frozen alga (450 g) was homogenized in chloroform, affording 1.5 g of dark green oil, which was subjected to silica gel chromatography. Elution with petroleum ether $(30-60^{\circ})$ gave \downarrow (173 mg), followed by χ and 4 as a 2:3 mixture (73 mg). Increasing the polarity of the solvent with added chloroform eluted \Im , which after additional silica gel chromatography in chloroform yielded 177 mg of pure material. Compounds χ and 4 were separated by fractional crystallization and by the preferential sublimation of χ . Properties of 1-4 are summarized in Table 1.

The mass spectra of 1 and 2 show molecular ion quartets characteristic of three bromine atoms and their molecular formula was assigned as $C_9H_6Br_3N$ by high resolution mass spectrometry (HRMS). Similarly, the molecular ions of 3 and 4 were quintets for four bromine atoms and

their molecular formulas were assigned as $C_8H_3Br_4N$ and $C_9H_5Br_4N$, respectively, by HRMS. Compounds 1, 2 and 4 all show loss of CH_3 in their mass spectra; 3 does not and 4 could be assumed to be a methyl derivative of 3, as well as a bromo derivative of 1 and 2, which were isomers.

The N-methylindole nucleus of 1 was recognized from the close correspondence of its 13 C NMR spectrum (CDCl₃) to that of N-methylindole itself.⁸ The 13 C NMR spectrum of 1 clearly shows⁸ resonances due to the N-CH₃ carbon at 32.4, C-3 at 93.1 (non-protonated, therefore bromine-bearing), C-8 at 125.9 and C-9 at 137.0 ppm. The three protonated aromatic carbons appear at 112.7, 120.2 and 134.3 ppm and the other two brominated carbons at 115.7 and 116.8 ppm. The positions of the bromine atoms in 1 were determined from the ¹H NMR spectrum of 1 (Table 1), which has signals for a 1,2,4-trisubstituted benzene (J₀ = 8.3 Hz, J_m = 1.6 Hz), thus assigning one bromine to C-5 or C-6 and the other two to C-2 and C-3. (The \overline{C} -3 bromine was already noted above from the ¹³C NMR spectrum.) Changing the solvent from deuteriochloroform to hexadeuterio-acetone causes a substantial downfield shift (0.31 ppm) of the 1.6-Hz doublet. Previous studies have shown that this type of solvent shift is expected only for H-2 and H-7 in the indole system;⁹ thus the resonance at 7.44 ppm (CDCl₃, J = 1.6 Hz) was assigned to H-7, and the third bromine must be at C-6.

The tribromo isomer of] also shows a 1,2,4-trisubstituted benzene pattern ($J_0 = 8.7$, $J_m = 1.7$ Hz) and it must then be 1-methyl-2,3,5-tribromoindole (2). In this case the solvent-shift experiment (Table 1) showed the signal due to H-7 (7.14 ppm, d, J = 8.7 Hz, CDCl₃) to shift downfield by 0.35 ppm in deuterioacetone.

The tetrabromoindoles might reasonably be expected by analogy to 1 and 2 to be 2,3,5,6tetrasubstituted. This is confirmed by the ¹H NMR spectrum (CDCl₃) of 4, which shows H-7 (the solvent-shifted proton) as a singlet at 7.58 ppm, near the position of H-7 in 1, and H-4 (which does not shift) at 7.75 ppm, near the position of H-4 in 2. The substitution of bromine at C-3 is confirmed by lack of proton absorption in the region characteristic of indoles H-3.⁹ Thus, 4 is 1-methyl-2,3,5,6-tetrabromoindole. The close correspondence of the ¹H NMR spectrum of 3 to that of 4 (CDCl₃, Table 1) assigns it as 2,3,5,6-tetrabromindole: a broad resonance at 8.32 ppm assigned to the N-H, a singlet at 7.76 ppm for H-4 (slightly broadened due to small coupling between N-H and H-4),¹⁰ and a very sharp singlet for H-7 at 7.61 ppm, which shifts downfield in deuterioacetone (Table 1).

Of the four purified compounds, only \mathfrak{Z} showed antimicrobial activity. At a level of 100 µg per 12.7-mm disc, \mathfrak{Z} produced zones of inhibition of 16 mm for <u>Bacillus</u> <u>subtilis</u> and 14 mm for <u>Saccharomyces cerevisiae</u> after 24 h of growth. In addition, \mathfrak{Z} shows an ID₅₀ of 3.6 µg/ml vs. L1210 tumor cells in tissue culture.

None of the bromoindoles 1-4 has previously been reported as a natural product, although 3^{11} and 4^{12} have been prepared synthetically and the mp's of the synthetic samples (149-151° and 168-170°) agree reasonably well with those in Table 1.¹³ A few, usually complex, halogenated indoles derived from marine animals are known¹⁴ and, quite recently, the first simple halogenated indoles from a marine alga from the South Island of New Zealand, <u>Rhodophyllis membranacea</u>, were reported.¹⁵ Phylogenetically, <u>R. membranacea</u> is not closely related to <u>Laurencia brongniartii</u>, though it belongs to the same subclass (Floridiophycidae) in the Rhodophyta. The haloindoles from <u>R. membranacea</u> differed from the present compounds in that they consisted of difficultly separable

Table l. Propertie	Properties of Bromoindoles J_{-}	indoles	λ-ϟ												
	2				~2					m2			~	42	
Mp, °C	90.5-91	16-			120-122	22			152.5-	152.5-154 dec			171.	171.5-172	
UV: ^ā λ _{max} , nm (ε _{max})	230 (3 288 (1 294 (1	(39,000), (10,000), (10,000),			228 (34 282 (7 290 (7 297 (7	(34,000), (7,300), (7,700), (7,700),			230 (2 294 (2 301 (2	(47,000), (9,600), (9,500)		•	233 296 303	(49,000), (10,000), (10,000),	
¹ H NMR			°c			- 40	°c			δ ^C				υç	
	ab J,Hz	၂၂	A	E	J, Hz	၂၂	A	٤	ပါ	C:A:1:1	A	E	ပ	T:A:1:1	A
N-CH ₃ s		3.75		s		3.78	3.88				÷	Ś	3.75	3.88	3.90
р. н-Л								br	8.32						
H-4 d	8.3	7.36	7.39	σ	1.7	7.64	7.64 7.58	ŝ	7.76	7.74	7.76	s	7.75	7.71	7.74
H-5 dd	8.3,1.6	7.26	7.31												
H-6				pp	1.7,8.7	7.32	7.38								
Н-7 d	1.6	7.44	7.44 7.75	σ	8.7	7.14	7.49	S	7.61	7.72	7.81	Ś	7.58	7.82	7.96
WS	<u>m/e</u> (%	(base)			<u>m/e</u> (% base)	base)			9 	<u>m/e</u> (% base)			m/e	<u>m/e</u> (% base)	
Σ	371 (29), 369 (100),	369 (100	.(,	371	371 (35), 369 (94),	69 (94)	_	4	37 (16	437 (16), 435 (65),	55),	4	51 (15	451 (15), 449 (65),	65),
	367 (100),	, 365 (36) ^e	5) ^e	267	267 (100), 365 (36) ^e	365 (36)e	4	33 (10	433 (100), 431 (68),	(68),	4	47 (10	447 (100), 445 (68),	(68),
ā	010	(6)6			SED / E \	919		4	429 (18)~	<u> </u>		4	443 (18) ⁻	(18) ⁻ #28 (2) ^e	
) 986	(0) (5)e			286 (7) ⁶	0) 7)e			350	350 (10) ⁶			1 6	364 (4) ^e	
$M = CNBrR^{f}$	245				245 (4) ^e	4) ^e			323	323 (1) ⁶			323	3 (1) ^e	
^a EtOH solution. in acetone solution.	1	^b Multiplicity. ^c Ppm from TMS. ^e Assignment confirmed by HRMS.	^C Ppm f ifirmed	rom TMS by HRMS	1	nt: C CH ₃ for	= cocl ₃	• A =	cb ₃ cocl H for	Solvent: $C = CDCl_3$, $A = CD_3COCD_3$, $T = CCl_4$. fR = CH_3 for λ , λ ; $R = H$ for λ .		N-H si	gnals	d _N -H signals not observed	rved

No. 46

4481

mixtures of chlorinated and brominated analogs and the substitution patterns assigned were 2,3,4- and 2,3,7- for the trihalindoles and 2,3,4,7- for the tetrahaloindoles.

<u>Acknowledgment</u>. This investigation was supported in part by research grants from the National Science Foundation (PCM 77-12584) and from the National Institute of Allergy and Infectious Diseases (AI 04769), and in part by a National Institutes of Health Postdoctoral Fellowship (CA 06164) from the National Cancer Institute. High resolution mass spectra were obtained in part under a research grant (CA 11388) from the National Cancer Institute.

References and Notes

- 1. A Hewlett-Packard 5992 mass spectrometer was employed.
- 2. J. L. Connor, 1972-1978.
- S. Caccamese and K. L. Rinehart, Jr., "Food-Drugs from the Sea Conference Proceedings 1977," University of Oklahoma Press, Norman, Oklahoma, 1978, p. 187.
- K. L. Rinehart, Jr., R. D. Johnson, I. C. Paul, J. A. McMillan, J. F. Siuda, and G. E. Krejcarek, "Food-Drugs from the Sea Conference Proceedings 1974," Marine Technology Society, Washington, D.C., 1976, p. 434.
- P. D. Shaw, W. O. McClure, G. Van Blaricom, J. Sims, W. Fenical, and J. Rude, <u>ibid</u>., p. 429.
- 6. Molecular weights and fragment ions refer to the most abundant isotopic species, i.e., ⁷⁹Br.
- 7. An initially observed GC peak with the molecular weight 351 (Br_3) was subsequently shown to arise from decomposition of 3 on the GC column.
- 8. J. B. Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York, 1972, pp. 267-268.
- 9. M. G. Reinecke, H. W. Johnson, Jr., and J. F. Sebastian, <u>J. Am. Chem. Soc</u>., 9], 3817 (1969).
- 10. P. J. Black and M. L. Heffernan, <u>Aust. J. Chem</u>., <u>1</u>8, 353 (1965); see for example ref. 14e.
- A. Da Settimo, M. F. Saettone, E. Nannipieri, and P. L. Barili, <u>Gazz. Chim. Ital.</u>, <u>97</u>, 1304 (1967).
- 12. A. Da Settimo and E. Nannipieri, <u>J. Org. Chem</u>., <u>35</u>, 2546 (1970).
- 13. The reported^{11 1}H NMR data (CDC1₃, 7.5, s; 7.7; s; 8.4, s ppm) for 2,3,5,6-tetrabromoindole (3) are also in reasonable agreement with the present data, but we reverse the previous assignments of H-4 and H-7.
- 14. (a) J. T. Baker and C. C. Duke, <u>Tetrahedron Lett.</u>, 2481 (1974); (b) J. T. Baker and C. C. Duke, <u>ibid.</u>, 1233 (1976); (c) G. E. Van Lear, G. O. Morton, and W. Fulmor, <u>ibid.</u>, 299 (1973); (d) T. Higa and P. J. Scheuer, <u>Naturwiss.</u>, 62, 395 (1975); (e) T. Higa and P. J. Scheuer, <u>Heterocycles</u>, 227 (1976); (f) W. D. Raverty, R. H. Thomson, and T. J. King, <u>J. Chem. Soc. Perkin I</u>, 1204 (1977); (g) R. J. Andersen, <u>Tetrahedron Lett.</u>, 2541 (1978).
- 15. M. R. Brennan and K. L. Erickson, <u>Tetrahedron Lett</u>., 1637 (1978).

(Received in USA 21 August 1978)